// CloudProvider contains configuration info and functions for interacting with
// cloud provider (GCE, AWS, etc).
type CloudProvider interface {Marcin Wielgus, 3 years ago: • Cluster-autoscaler: cloud provider interface
// Name returns name of the cloud provider.
Name() string
// NodeGroups returns all node groups configured for this cloud provider.
//返回所有伸缩组
NodeGroups() []NodeGroup
// NodeGroupForNode returns the node group for the given node, nil if the node
// should not be processed by cluster autoscaler, or non-nil error if such
// occurred. Must be implemented.
NodeGroupForNode(*apiv1.Node) (NodeGroup, error)
// Pricing returns pricing model for this cloud provider or error if not available.
// Implementation optional.
Pricing() (PricingModel, errors.AutoscalerError)
// GetAvailableMachineTypes get all machine types that can be requested from the cloud provider.
// Implementation optional.
GetAvailableMachineTypes() ([]string, error)
// NewNodeGroup builds a theoretical node group based on the node definition provided. The node group is not automatically
// created on the cloud provider side. The node group is not returned by NodeGroups() until it is created.
// Implementation optional.
NewNodeGroup(machineType string, labels map[string]string, systemLabels map[string]string,
taints []apiv1.Taint, extraResources map[string]resource.Quantity) (NodeGroup, error)
// GetResourceLimiter returns struct containing limits (max, min) for resources (cores, memory etc.).
GetResourceLimiter() (*ResourceLimiter, error)
// GPULabel returns the label added to nodes with GPU resource.
GPULabel() string
// GetAvailableGPUTypes return all available GPU types cloud provider supports.
GetAvailableGPUTypes() map[string]struct{}
// Cleanup cleans up open resources before the cloud provider is destroyed, i.e. go routines etc.
Cleanup() error
// Refresh is called before every main loop and can be used to dynamically update cloud provider state.
// In particular the list of node groups returned by NodeGroups can change as a result of CloudProvider.Refresh().
Refresh() error
}
// NodeGroup contains configuration info and functions to control a set
// of nodes that have the same capacity and set of labels.
type NodeGroup interface {
// MaxSize returns maximum size of the node group.
MaxSize() int
// MinSize returns minimum size of the node group.
MinSize() int
// TargetSize returns the current target size of the node group. It is possible that the
// number of nodes in Kubernetes is different at the moment but should be equal
// to Size() once everything stabilizes (new nodes finish startup and registration or
// removed nodes are deleted completely). Implementation required.
TargetSize() (int, error)
// IncreaseSize increases the size of the node group. To delete a node you need
// to explicitly name it and use DeleteNode. This function should wait until
// node group size is updated. Implementation required.
//扩容伸缩组
IncreaseSize(delta int) error
// DeleteNodes deletes nodes from this node group. Error is returned either on
// failure or if the given node doesn't belong to this node group. This function
// should wait until node group size is updated. Implementation required.
//从伸缩组中删除节点
DeleteNodes([]*apiv1.Node) error
// DecreaseTargetSize decreases the target size of the node group. This function
// doesn't permit to delete any existing node and can be used only to reduce the
// request for new nodes that have not been yet fulfilled. Delta should be negative.
// It is assumed that cloud provider will not delete the existing nodes when there
// is an option to just decrease the target. Implementation required.
DecreaseTargetSize(delta int) error
// Id returns an unique identifier of the node group.
Id() string
// Debug returns a string containing all information regarding this node group.
Debug() string
// Nodes returns a list of all nodes that belong to this node group.
// It is required that Instance objects returned by this method have Id field set.
// Other fields are optional.
Nodes() ([]Instance, error)
// TemplateNodeInfo returns a schedulernodeinfo.NodeInfo structure of an empty
// (as if just started) node. This will be used in scale-up simulations to
// predict what would a new node look like if a node group was expanded. The returned
// NodeInfo is expected to have a fully populated Node object, with all of the labels,
// capacity and allocatable information as well as all pods that are started on
// the node by default, using manifest (most likely only kube-proxy). Implementation optional.
TemplateNodeInfo() (*schedulernodeinfo.NodeInfo, error)
// Exist checks if the node group really exists on the cloud provider side. Allows to tell the
// theoretical node group from the real one. Implementation required.
Exist() bool
// Create creates the node group on the cloud provider side. Implementation optional.
Create() (NodeGroup, error)
// Delete deletes the node group on the cloud provider side.
// This will be executed only for autoprovisioned node groups, once their size drops to 0.
// Implementation optional.
Delete() error
// Autoprovisioned returns true if the node group is autoprovisioned. An autoprovisioned group
// was created by CA and can be deleted when scaled to 0.
Autoprovisioned() bool
}